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We examine the effects of a linearly polarized nonresonant radiative field on the dynamics of rotationally
inelastic Na+ + N2 collisions at eV collision energies. Our treatment is based on the Fraunhofer model of
matter wave scattering and its recent extension to collisions in electric fields [M. Lemeshko, B. Friedrich,
J. Chem. Phys. 129 (2008) 024301]. The nonresonant radiative field changes the effective shape of the
target molecule by aligning it in the space-fixed frame. This markedly alters the differential and integral
scattering cross-sections. As the cross-sections can be evaluated for a polarization of the radiative field
collinear or perpendicular to the relative velocity vector, the model also offers predictions about steric
asymmetry of the collisions.

© 2008 Elsevier B.V. All rights reserved.
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. Introduction

Reactions between ions and simple molecules have been
nvoked in the chemistry of comets [1], dense interstellar clouds
2], as well as in the atmospheric chemistry of planet-like objects,
uch as Io [3] and Titan [4]. Since the late 1990s, the Na+ + X col-
isions (with X an atmospheric ligand) have been recognized to be
esponsible for the formation of sporadic sodium layers in Earth’s
pper mesosphere [5].

The species that take part in the reactions in the upper
tmosphere and in interstellar space are exposed to electro-
agnetic radiation of varying intensity. When polarized, this
adiation may create directional molecular states in which the
patial distribution of the molecular axis is itself polarized.
his axis polarization arises from the nonresonant interaction
f the radiation with the anisotropic molecular polarizability
6]. Here we examine how such polarization may affect the

∗ Corresponding author.
E-mail address: brich@fhi-berlin.mpg.de (B. Friedrich).
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ifferential and integral cross-sections of the ion-molecule colli-
ions.

In particular, we investigate the effect of an intense nonreso-
ant radiative field on the rotationally inelastic collisions of Na+ions
ith N2 molecules at eV collision energies. This collision system

s of paramount importance in generating sporadic sodium in the
esosphere [5].
In our investigation, we make use of a recently developed quan-

um model of collisions in fields [7], which we here adapt for the
ase of an induced-dipole interaction of a nonresonant radiative
eld with molecular polarizability [6]. We limit our considera-
ions to the scattering of 1� molecules by ground-state atomic
ons. The model is based on Fraunhofer scattering of matter waves
8–10], and is analytic in both its field-free and field-dependent
ariant.

In Section 2, we briefly describe the Fraunhofer model of matter-
ave scattering and its extension to the case of scattering in

onresonant radiative fields. In Section 3, we apply the model to
he Na+ + N2 rotationally inelastic collisions, and evaluate their dif-
erential and integral cross-sections and the steric asymmetry as a
unction of the intensity of the radiative field. The main conclusions
f this work are summarized in Section 4.

http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:brich@fhi-berlin.mpg.de
dx.doi.org/10.1016/j.ijms.2008.06.010
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Fig. 1. Schematic of Fraunhofer diffraction by an impenetrable, sharp-edged obsta-
cle as observed at a point of radius vector r from the obstacle. Relevant is the shape
of the obstacle in the XY plane, perpendicular to the initial wave vector, k, itself
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irected along the Z-axis of the space-fixed system XYZ. The angle ϕ is the polar
ngle of the radius vector R which traces the shape of the obstacle in the X, Y plane
nd ϑ is the scattering angle. See text.

. The Fraunhofer model of matter-wave scattering

.1. Field-free scattering

Inherent to the Fraunhofer model of matter-wave scattering
s the energy sudden approximation and the assumption of an
mpenetrable, sharp-edged scatterer [7]. As a result, the Fraunhofer
mplitude for scattering into an angle ϑ from an initial, |i〉, to a final,
f〉, state is given by

i→f(ϑ) = 〈f|f (ϑ)|i〉 (1)

ith

(ϑ) ≈
∫

e−ikRϑ cos ϕdR (2)

he amplitude for Fraunhofer diffraction as observed at a point of
adiusvector r from the scatterer, see Fig. 1. Here ϕ is the polar
ngle of the radius vector R which traces the shape of the scatterer,
≡ |R|, and k ≡ |k| with k the initial wave vector. Relevant is the

hape of the obstacle in the space-fixed XY plane, perpendicular to
, itself directed along the space-fixed Z-axis, cf. Fig. 1.

We note that the notion of a sharp-edged scatterer comes close
o the rigid-shell approximation, widely used in classical [11–13],
uantum [14], and quasi-quantum [15] treatments of field-free
olecular collisions, where the collision energy by far exceeds the

epth of any potential energy well.
In optics, Fraunhofer (i.e., far-field) diffraction [16] occurs when

he Fresnel number is small

≡ a2

r�
� 1 (3)

ere a is the dimension of the obstacle, r ≡ |r| is the distance from
he obstacle to the observer, and � is the wavelength, cf. Fig. 1. Con-
ition (3) is well satisfied for nuclear scattering at MeV collision
nergies as well as for molecular collisions at thermal and hyper-
hermal energies. In the latter case, inequality (3) is fulfilled due
o the compensation of the larger molecular size a by a larger de
roglie wavelength � pertaining to thermal molecular velocities.
For nearly circular targets, with a boundary R(ϕ) = R0 + ı(ϕ) in
he XY plane, the Fraunhofer integral of Eq. (2) can be evaluated and
xpanded in a power series in the deformation ı(ϕ),

(ϑ) = f0(ϑ) + f1(ϑ, ı) + f2(ϑ, ı2) + · · · (4)

T
p
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ith f0(ϑ) the amplitude for scattering by a disk of radius R0

0(ϑ) = i(kR2
0)

J1(kR0ϑ)
(kR0ϑ)

(5)

nd f1 the lowest-order anisotropic amplitude,

1(ϑ) = ik

2�

∫ 2�

0

ı(ϕ)e−i(kR0ϑ) cos ϕdϕ (6)

here J1 is a Bessel function of the first kind. Both Eqs. (5) and (6)
re applicable at small values of ϑ � 30◦, i.e., within the validity of
he approximation sin ϑ ≈ ϑ.

The scatterer’s shape in the space fixed frame, see Fig. 1, is given
y

(˛, ˇ, �; �, ϕ) =
∑
	
�

�	
D	
�
(˛ˇ�)Y	�(�, ϕ) (7)

here (˛, ˇ, �) are the Euler angles through which the body-fixed
rame is rotated relative to the space-fixed frame, (�, ϕ) are the
olar and azimuthal angles in the space-fixed frame, D	

�
(˛ˇ�) are
he Wigner rotation matrices, and �	
 are the Legendre moments
escribing the scatterer’s shape in the body-fixed frame. Clearly,
he term with 	 = 0 corresponds to a disk of radius R0,

0 ≈ �00√
4�

(8)

ince of relevance is the shape of the target in the XY plane, we set
= (�/2) in Eq. (7). As a result,

(ϕ) = R
(

˛, ˇ, �;
�

2
, ϕ

)
− R0 = R(ϕ) − R0

=
∑
	
�
	 /= 0

�	
D	
�
(˛ˇ�)Y	�

(
�

2
, ϕ

)
(9)

y combining Eqs. (1), (6), and (9) we finally obtain

i→f(ϑ) ≈ 〈f|f0 + f1|i〉 = 〈f|f1|i〉

= ikR0

2�

∑
	
�

	 /= 0
	+� even

�	
〈f|D	
�
|i〉F	�J|�|(kR0ϑ) (10)

here

	� =

{
(−1)�2�

(
2	 + 1

4�

)1/2

(−i)	

√
(	 + �)!(	 − �)!

(	 + �)!!(	 − �)!!
for 	 + � even and 	 ≥ �

0 elsewhere
(11)

or negative values of �, the factor (−i)	 is to be replaced by i	 .

.2. Scattering in a radiative field

When subject to an external electric field, the electronic dis-
ribution of any molecule becomes polarized to some extent. This
nteraction, governed by the molecular polarizability, results in
n induced dipole moment. While for the experimentally feasible
tatic fields such induced moments are very weak, sizable dipole
oments can be induced by a radiative field. If the induced-dipole

nteraction is anisotropic and sufficiently strong, the molecular
otational states undergo hybridization (coherent linear superpo-
ition) which aligns the molecular axis along the field vector [6].

he strength of the interaction is characterized by a dimensionless
arameter 
ω

ω ≡ 2�
˛I

Bc
= 
˛ε2

4B
(12)
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ig. 2. A comparison of the moduli of the free rotor wavefunctions |J, M = 0〉, pane
olarization vector ε of the radiative field is also shown.

ith 
˛ = ˛‖ − ˛⊥ the polarizability anisotropy, ˛‖,⊥ the polar-
zability components parallel and perpendicular to the molecular
xis, B the rotational constant of the molecule, I the radiation inten-
ity, and ε the amplitude of the corresponding oscillating electric
eld. The induced-dipole interaction couples states of the free-rotor
asis set with same M but with J’s that differ by 0, ±2. Thus the
esulting hybrid states take the form

J̃, M; 
ω〉 =
∑
J=2n

a J̃
JM(
ω)|J, M〉 for J̃ even (13)

J̃, M; 
ω〉 =
∑

J=2n+1

a J̃
JM(
ω)|J, M〉 for J̃ odd (14)

here 2n = m + |M| and 2n + 1 = m + |M| with m either 0, 2, 4 . . .

r 1, 3, 5 . . . The hybridization coefficients aJ̃
JM(
ω) depend solely

n the interaction parameter 
ω. The symbol J̃ denotes the nom-
nal value of J that pertains to the field-free rotational state which
diabatically correlates with the hybrid state,

J̃, M, 
ω → 0〉 → |J, M〉 (15)

ince the hybrid wavefunctions, Eqs. (13) and (14), comprise either

ven or odd J’s, the states have definite parity, (−1)J̃ .
Apart from possessing a particular energy level pattern, the

J̃, M, 
ω〉 eigenstates are aligned along the electric field vector,
. The degree of alignment depends on the values of J̃, M, and 
ω.

n such states, the molecular axis librates about the field direction
ike a pendulum, and so the hybrid states are referred to as pen-
ular. It is the directionality of the pendular states that enters the
eld-dependent Fraunhofer model and distinguishes it from the
eld-free model, which assumes an isotropic distribution of the
olecular axes. The directional properties of pendular states are

xemplified in Fig. 2, which shows polar diagrams of both field-free
nd pendular wave functions at 
ω = 25.

The scattering process in the field consists of the following steps:
molecule in a free-rotor state |J, M〉 enters adiabatically the radia-

ive field where it is transformed into a pendular state |J̃, M, 
ω〉.
his pendular state may be changed by the collision in the field
nto another pendular state, |J̃′, M′, 
ω〉. As the molecule leaves
he field, the latter pendular state is adiabatically transformed into

free-rotor state |J′, M′〉. Thus the net result is, in general, a rota-

ionally inelastic collision, |J, M〉 → |J′, M′〉.
In order to be able to apply Eq. (10) to collisions in the radiative

eld, we have to transform Eqs. (13) and (14) to the space-fixed
ith the moduli of the pendular wavefunctions |J̃, M = 0; 
ω = 25〉, panel (b). The

rame XYZ. If the electric field vector is specified by the Euler angles
ϕε, �ε, 0) in the XYZ frame, the initial and final pendular states take
he form

i〉 ≡ |J̃, M; 
ω〉 =
∑

J

a J̃
JM(
ω)

∑
�

D J
�M

(ϕε, �ε, 0)YJ�(�, ϕ) (16)

f| ≡ 〈J̃′, M′; 
ω| =
∑

J′
b J̃

′∗
J′M′ (
ω)

∑
�′

D J′∗
�′M′ (ϕε, �ε, 0)Y∗

J′�′ (�, ϕ)

(17)

hich is seen to depend solely on the angles � and ϕ.
On substituting from Eqs. (16) and (17) into Eq. (10) and its

ntegration, we obtain a general expression for the Fraunhofer scat-
ering amplitude in the field,

ω
i→f(ϑ) = ikR0

2�

∑
	, �

	 /= 0
	+� even

D	∗
−�,
M

(ϕε, �ε, 0)�	0F	� J|�|(kR0ϑ)

×
∑

JJ′

a J̃
JM

(
ω)b J̃′∗
J′M′ (
ω)

√
2J + 1
2J′ + 1

C(J	J′; 000)C(J	J′; M
MM′)

(18)

here 
M ≡ M′ − M and C(J1, J2, J3; M1, M2, M3) are
lebsch–Gordan coeffients [20]. Since the ion-linear molecule
otential is axially symmetric, only the �	0 coefficients contribute
o the scattering amplitude.

Eq. (18) simplifies for special cases. If we limit our considerations
o homonuclear diatomics, only the �	0 coefficients for even 	 con-
ribute to the expansion, Eq. (7), and, consequently, to the scattering
mplitude, Eq. (18). Furthermore, if we fix the initial molecular state
o the ground state, |J, M〉 ≡ |0, 0〉, and restrict the polarization of
he radiation in the space-fixed frame to a particular geometry, the
roblem simplifies as follows:

(i) For a polarization vector collinear with the initial wave
vector, ε‖k, we have �ε → 0, ϕε → 0. As as result, only
the � = −
M′ term yields a nonvanishing contribution and
so

f ω,‖
0,0→J̃′,M′ (ϑ) = J|M′ |(kR0ϑ)

ikR0
2�

∑
	 even

	 /= 0

�	0F	M′

√

×
∑

JJ′

a0
J0(ω)b J̃′∗

J′M′ (ω)
2J + 1
2J′ + 1

C(J	J′; 000)C(J	J′; 0M′M′) (19)
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We see that the angular dependence of the scattering amplitude
for the parallel case is simple, given by a single Bessel function,
J|M′ |.

ii) If the polarization vector is perpendicular to the initial wave
vector, ε ⊥ k, we have �ε → �/2, ϕε → 0. Hence

f ω,⊥
0,0→J̃′,M′ (ϑ) = ikR0

2�

∑
	, � even

	 /= 0

d	
−�,M′

(�

2

)
�	0F	�J|�|(kR0ϑ)

×
∑

JJ′

a0
J0(ω)b J̃′∗

J′M′ (ω)

√
2J + 1
2J′ + 1

C(J	J′; 000)C(J	J′; 0M′M′) (20)

where d	
−�,M′ are the real Wigner rotation matrices. Since the

summation mixes different Bessel functions (for a range of �’s),
the angular dependence of the scattering amplitude in the per-
pendicular case is more involved than in the parallel case.

The Clebsch–Gordan coefficient C(J	J′; 000) in Eqs. (19) and (20)
s nonzero only if J + J′ is even, since the summation includes only
ven-	 terms. Moreover, given the definite parity of the pendular
tates, we see that only parity-conserving transitions are allowed,
amely J = 0 → J′ = 2, 4, 6, . . . for our choice of the initial state.

We can also see that, for either geometry, only the partial
ross-sections for the J = 0, M = 0 → J′, M′ collisions with M′ even
ontribute to the scattering. This is particularly clear in the ε‖k
ase, where the F	M′ coefficients vanish for M′ odd. In the ε ⊥ k
ase, a summation over � arises. Since for 	 even and M′ odd the
eal Wigner matrices obey the relation d	

−�,M′ (�/2) = −d	
�,M′ (�/2),

he sum over � is zero and so are the partial cross-sections with M′

dd.

. Rotationally inelastic collisions of Na+ with N2 in a
adiative field

Here we apply the model to the Na+ + N2(J=0→J′) collisions. The
olarization anisotropy 
˛ = 0.93 Å3 and rotational constant B =
.9982 cm−1 make the N2 molecule a suitable candidate for an
xperiment on laser-assisted ion-molecule collisions.

According to Ref. [19], the ground-state Na+ – N2potential energy
urface has a global minimum −2712 cm−1 deep. The effect of this
ttractive well is negligible for low-energy collisions; we chose a

ollision energy of 5 eV, which corresponds to a wave number k =
73.8 Å−1. The “hard shell” of the potential energy surface at this
ollision energy is shown in Fig. 3. We found it by a fit to Eq. (7). The
	0 coefficients are listed in Table 1. Due to the D2h symmetry of

he potential energy surface, only even- 	 terms arise. According to

ig. 3. Equipotential line R(�) for the Na+– N2 potential energy surface at a collision
nergy of 5 eV. The Legendre moments, Eq. (7), of the potential energy surface are
isted in Table 1.

5
fi
o
s
b
a
(

3

m
c

T
H
e

	

0
2
4
6
8

A

l of Mass Spectrometry 280 (2009) 19–25

q. (8), the �00 coefficient determines the hard-sphere radius R0,
esponsible for elastic scattering.

.1. Differential cross-sections

The field-free state-to-state differential cross-section,

f−f
0,0→J′,M′ (ϑ) = |f0,0→J′,M′ (ϑ)|2 (21)

ee Eq. (10), is proportional to �2
J′0, which means that the shape

f the repulsive potential provides direct information about the
elative probabilities of the field-free transitions and vice versa.
ince for the Na+–N2system the �2,0 coefficient dominates the
nisotropic part of the potential, see Table 1, the corresponding
= 0 → J′ = 2 collisions are expected to dominate the inelastic
ross section. Because of the D2h symmetry, there are no parity-
reaking J = 0 → odd J′ collisions in the Na+ − N2(J = 0 → J′)
ystem.

After averaging over M′ and invoking the asymptotic properties
f the Bessel functions [21], we obtain for the parity-conserving
= 0 → even J′collisions

f−f
0→J′ (ϑ) ∼ cos2

(
kR0ϑ − �

4

)
(22)

he elastic differential scattering cross-section, cf. Eq. (5), has a
in2(kR0ϑ − �/4) asymptote, and so is seen to be shifted with
espect to the differential cross-sections for even-J′ transitions by a
uarter of a wavelength. Known as the “Blair phase rule,” the shift
s a conspicuous feature of Figs. 4 and 5.

The state-to-state differential cross-sections for scattering in a
adiative field parallel (ε‖k) and perpendicular (ε ⊥ k) to the initial
ave vector are given by

ω,(‖,⊥)
0→J′ (ϑ) =

∑
M′

Iω,(‖,⊥)
0,0→J′,M′ (ϑ) (23)

ith
ω,(‖,⊥)
0,0→J′,M′ (ϑ) = |f ω,(‖,⊥)

0,0→J̃′,M′ (ϑ)|2 (24)

The differential cross-sections for the Na+ + N2 collisions are
resented in Figs. 4 and 5 for an interaction parameter 
ω = 10
nd 25, corresponding to laser intensities of 2.15 × 1012 W/cm2 and
.37 × 1012 W/cm2, respectively. The figures show that a radiative
eld on the order of 1012 W/cm2 dramatically alters the magnitudes
f the differential cross-sections, but does not produce any “phase
hift” of the angular oscillations. Such a “phase shift” is absent
ecause only even Bessel functions, which have a cos2(kR0ϑ − �/4)
symptote, contribute to the scattering at any field strength, see Eqs.
19) and (20).
.2. Integral cross-sections

The angular range, ϑ � 30◦, where the Fraunhofer approxi-
ation applies the best, comprises the largest impact-parameter

ollisions that contribute to the scattering the most, see

able 1
ard shell Legendre moments �	0, Eq. (7), for the Na+ − N2 potential at a collision
nergy of 5 eV

�	0 (Å)

6.1221
0.5301

−0.0359
0.0022
0.0002

ll odd moments are zero.
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Fig. 4. Differential cross-sections for the Na+ + N2(J = 0 → J′) collisions in a radia-
tive field for 
ω = 10 (red dashed line) and 
ω = 25 (blue solid line), parallel to
t
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We note that within the Fraunhofer model, elastic collisions do
he initial wave vector. The field-free cross-sections are shown by the green solid
ine.

igs. 4 and 5. Therefore, the integral cross-section can be obtained
o a good approximation by integrating the Fraunhofer differential
ross-section, Eq. (23), over the solid angle sin ϑ dϑ dϕ,

ω,(‖,⊥)
0→J′ =

∫ 2�

0

dϕ

∫ �

0

Iω,(‖,⊥)
0→J′ (ϑ) sin ϑ dϑ (25)

he integral cross-sections thus obtained for the field parallel and
erpendicular to the initial wave vector are presented in Fig. 6.
ne can see that the state-to-state cross-section for the J = 0 →

′ = 2 collisions steadily decreases with the interaction parameter
ω, whereas the other state-to-state cross-sections show a non-
onotonous dependence. These features can be explained by the

eld dependence of the overlap of the hybridization coefficients,
J̃
JM(
ω) and bJ̃′

J′M′ (
ω), affecting the scattering amplitude, cf. Eqs.
19) and (20) and Ref. [7]. The requisite laser intensities needed for
ttaining such dramatic changes of the cross-sections are on the
rder of 1012 W/cm2and can be easily achieved by means of stan-
ard nonresonant pulsed laser radiation, focused to a waist ranging

etween 10 and 100 �m. A suitable laser system for hybridizing
otor states of diatomic molecules is a Nd:YAG laser operated at its
undamental frequency (wavelength of 1064 nm) [22].

n
o
r

ig. 5. Differential cross-sections for the Na + N2(J = 0 → J ) collisions in a radia-
ive field for 
ω = 10 (red dashed line) and 
ω = 25 (blue solid line), perpendicular
o the initial wave vector. The field-free cross-sections are shown by the green solid
ine.

.3. Steric asymmetry

We define the steric asymmetry as

i→f = �‖ − �⊥
�‖ + �⊥

, (26)

here the cross-sections �‖,⊥ correspond, respectively, to ε‖k and
⊥ k, and are obtained from Eq. (25). The dependence of the steric

symmetry on the induced dipole interaction parameter 
ω is
resented in Fig. 7. One can see that a particularly pronounced
symmetry obtains for the J = 0 → J′ = 6 channel. This can be
raced to the field dependence of the corresponding integral cross-
ections, Fig. 6. Indeed, a conspicuous feature seen in Fig. 6 is the
ignificant dependence of the J = 0 → J′ = 6 channel on the col-
ision geometry. The integral cross-section for the J = 0 → J′ = 6
hannel is always greater for the ε ⊥ k geometry than it is for ε‖k
ecause of the non-vanishing d	

−�,M′ ( �
2 ) Wigner matrices, cf. Eqs.

19) and (20). The asymmetry for the J = 0 → J′ = 2 or 4 channels
s less pronounced, as only terms with M′ up to 2 or 4 are involved
or ε ⊥ k.
ot exhibit any steric asymmetry. This follows from the isotropy
f the elastic scattering amplitude, Eq. (20), which depends on the
adius R0 only: a sphere looks the same from any direction.
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Fig. 6. Partial integral cross-sections for Na+ + N2 (J = 0 → J′) collisions in a radiative
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[13] A.J. Marks, J. Chem. Soc., Faraday Trans. 90 (1994) 2857.
ig. 7. Steric asymmetry, as defined by Eq. (26), for Na+ + N2 (J = 0 → J′) collisions.

. Conclusions

We made use of the Fraunhofer model of matter wave scat-
ering to treat rotationally inelastic ion-molecule collisions in
onresonant radiative fields. In accordance with the energy sudden
pproximation, inherent to the Fraunhofer model, the interac-
ion must be dominated by repulsion, which is typically well
atisfied for ion-molecule collisions down to collision energies
n the oder of 1 eV. The Fraunhofer model is also inherently
uantum and, therefore, capable of accounting for interference
nd other non-classical effects. The effect of the radiative field
nters the model via the directional properties of the molecu-
ar states created by the field. Even a small alignment of the

olecules was shown to cause a large alteration of the differen-

ial and integral cross-sections. The strength of the analytic model
ies in its ability to separate dynamical and geometrical effects
nd to qualitatively explain the resulting scattering features. These
nclude the angular oscillations in the state-to-state differential

[
[

field parallel, panel (a), and perpendicular, panel (b), to the initial wave vector.

ross-sections or the rotational-state dependent oscillations in the
ntegral cross-sections as a function of the intensity of the radiative
eld.

We hope that the model will inspire new experimental work
ased on the combination of an ion trap with a molecular beam
verlaid by a laser beam [23].
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